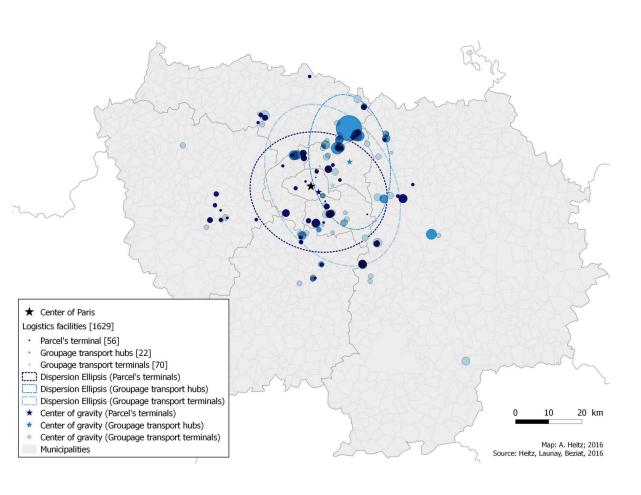
Reducing freight traffic with smart urban logistics


Sustainable and liveable cities with low logistics visibility

Citiy logistics faces major challenges from city densification

- Activities related to transportation / delivery of goods pushed out of cities (Logistics Sprawl)
- Transportation volumes have increased, distances have become longer
- Swiss population projected 10M in 2040 (+25%)
- Parcel volume forecasts ZH:
 - +75% parcel volume by 2040
 - +37% expansion of logistics fleet
 - +58% more small delivery vehicles
- Legislation: Settlement areas fixed densification of urban areas is a must; construction mandatory
 - Decreased infrastructure availability for freight transport
- Growth to be managed on existing infrastructure

Growing freight and delivery traffic leads to challenges in urban areas

Economic challenges			Environmental challenges			Social challenges		
\$	Logistics costs for last mile (53% of total shipping costs)	†		CO ₂ and particulate matter emissions due to increased demand in goods and e-commerce	†		Quality of life decrease due to air pollution, noise, congested streets	ļ
	Congestion costs due to drivers waiting in traffic jam	†		Flexibility increase through smaller delivery vans causes more traffic and subsequently, more emissions	†	# 17/4 # 17/4	Increased risk of accidents due to more traffic, blocked sidewalks and bicycle paths	†
	Delivery effort (not only stores but also private households to be delivered)	†	1	Raw material consumption due to production of more, but smaller delivery vehicles	†			
	Bundling possibilities due to short lead time expectations from customers	ļ						
\odot	Reliability of LSP	↓						4

Infrastructure will become a scarce resource

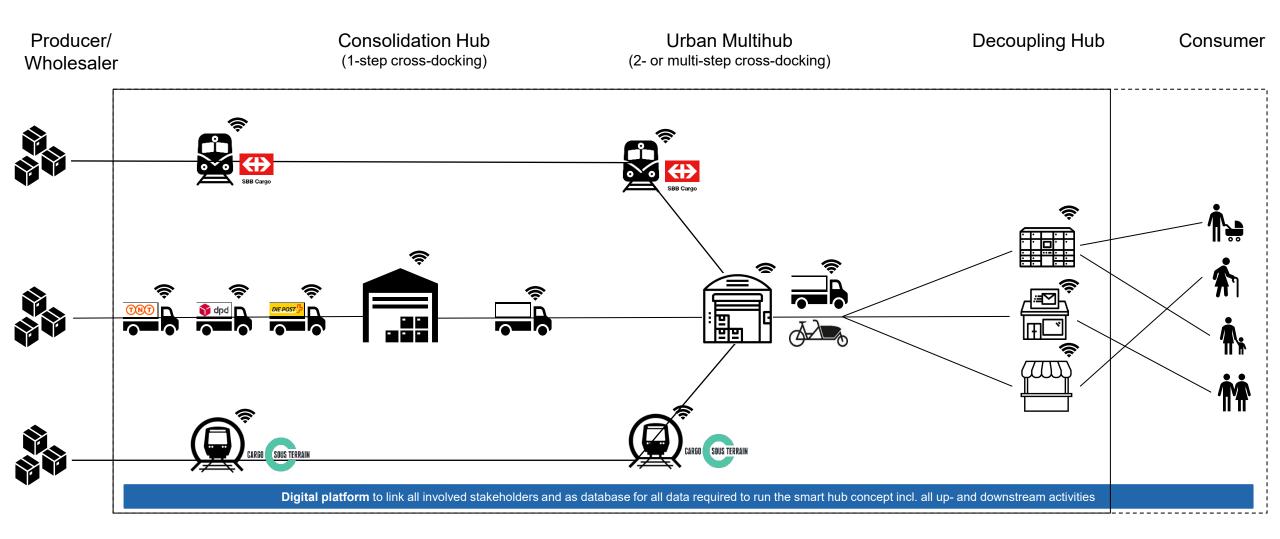
What shall we do?

Systemic approach: Coopetition

Systemic approach: Multimodality

Systemic approach: Integrating customers into the process

Systemic approach: City of short distances in goods delivery



Zürcher Hochschule für Angewandte Wissenschaften

Core concept of research project: Smart urban multihub

Project work packages

(1) Dev. of an urban hub concept

- No. of hubs and hub purpose based on city's circumstances
- Optimal location of hubs to serve city sustainable, reliable, and resilient
- Provision and disposal of deliveries
- Optimisation for sustainable city logistics

(2) Design of urban multihub

- Evaluation of stakeholder requirements and expectations (incl. logistics providers, retailers, customers, neighbourhood, authorities)
- Evaluation of multi-purpose requirements
- (Automated) multi-stage cross-docking
- Facility requirements to serve as UMH
 - Development of Business model for UMH

(3) White-label logistics

- Development of a collaboration model
- Combination possibilities for white-label logistics
- Organisation of last mile delivery
- Economic, Social and Sustainability impacts of a white-label solution
- Development of Business model for whitelabel logistics

Digitisation as backbone of solution

- Tour planning for low km routes / delivery speed
- Route optimisation / Last mile planning
- Impacts on sustainability

- Customer interaction (incl. customized mailing)
- Shared IT infrastructure as an enabling technology
- Prediction of future orders

(4) Decoupling customer/supplier

- Customer needs and preferences
- Receiver's motivation to take active role in solution
- Decision model for decoupling hub location
- Size of decoupling hub
- Mobile / fix decoupling hubs
- Business model for decoupling hub

(5) Incentive model

- Regulatory conditions for sustainable urban logistics
- Incentives for sustainable urban logistics
- Incentives to foster coopetition
- Development of incentive model for coopetition and use of urban hub concept
- Integration of incentive model into ICT

(6) Impacts of an urban hub concept

- Impacts on ecological, social, and economic sustainability
 - Advantages for the inhabitants of Zurich
 - Potential sustainability gains (CO₂e emissions savings, noise level reduction, ...)
 - Reduction potential of congestion
 - Impact on costs and cost savings
- Long-term and short-term benefits of an urban multihub

To achieve sustainable urban goods supply and disposal all stakeholders need to be involved

Logistics Service Providers

Cooperation with competitors (coopetition)

Cooperation with complementary service providers for traffic reduction

Use of hubs and platforms

White / Multi Label Logistics

Auction platform to offer free capacities

Delivery allocation based on simulation for energy autonomy

Cities and politics

Provide support for hubs in urban areas

Create positive incentives

Provide shared logstics infrastructure

CO2 certificates, sustainability certifications

Adjust regulations for delivery times / access to city center with alternative technologies or modes of transport

People

Willingness to actively engage in delivery process

Acceptance of logistics services in the urban area

Reasonable expectation of delivery times

Sensitivity / demand for sustainable delivery options

Thank you very much for your attention!

Prof. Dr. Maike Scherrer

Head of Research Area
Sustainable Supply Chain Management and Mobility
Institute of Sustainable Development
ZHAW School of Engineering

maike.scherrer@zhaw.ch

+41 58 934 40 43

www.zhaw.ch/ine

Patrick Doege

Research Associate
Sustainable Supply Chain Management
Institute of Sustainable Development
ZHAW School of Engineering

patrick.doege@zhaw.ch

+41 58 934 44 44

www.zhaw.ch/ine